adv

A non-autonomous model for neuronal dynamical: A relationship between neuronal activity and external stimulus. (arXiv:1712.09751v1 [math.DS])

In this work we consider a class of nonlocal non-autonomous evolution problems, which arise in neuronal activity, \[ \begin{cases} \partial_t u(t,x) =- a(t)u(t,x) + b(t) \displaystyle\int_{\mathbb{R}^N} J(x,y)f(t,u(t,y))dy -h +S(t,x) ,\ t\geq\tau \in \mathbb{R},\ x \in \Omega, u(\tau,x)=u_\tau(x),\ x\in\Omega u(t,x)= 0,\ t\geq\tau,\ x \in\mathbb{R}^N\backslash\Omega. \end{cases} \] Under suitable assumptions on the nonlinearity $f: \mathbb{R} \times \mathbb{R} \to\mathbb{R}$ and constraints on the functions $J: \mathbb{R}^N \times \mathbb{R}^{N}\to \mathbb{R}$;\, $S: \mathbb{R} \times \mathbb{R}^{N}\to\mathbb{R}$ and $a,b:\mathbb{R} \to\mathbb{R}$, we study the assimptotic behavior of the evolution process, generated by this problem, in an appropriated Banach space.% and we present a brief discussion on the model with a biological interpretation. We prove results on existence, uniqueness and smoothness of the solutions and the existence of pullback attracts for the evolution process as查看全文

Solidot 文章翻译

你的名字

留空匿名提交
你的Email或网站

用户可以联系你
标题

简单描述
内容