solidot新版网站常见问题,请点击这里查看。
长城
wanwan(42055)
发表于2021年09月23日 17时43分 星期四
来自流星追逐记
2019 年 1 月 3 日,中国航天器嫦娥四号开始着陆月球。当着陆器接近月表时,无数陨石坑逐渐出现在视野当中,而通过镜头操作的工程师无法直观判断实际高度。当时负责在北京密云地面站接收着陆数据的 Xu Yan 正和她的团队一起沉默而紧张地等待着重要信号。收到信号,才代表着光学、激光与微波传感器已经与火箭发动机有效结合,成功完成软着陆。Su 回忆道,“当[光谱信号]清晰传来时,每个人都在激动地欢呼。多年的努力终于带来了最甜蜜的回报。” 嫦娥四号在月球之外中继卫星的帮助下,实现了在永远背向地球的月之暗面成功着陆的壮举。长期以来,中国的太空计划一直是在追随美国和苏联(现为俄罗斯)的脚步,但这一次中国创下了世界第一、同时也昭示出中国人登月的雄心。 在 2020 年的嫦娥五号任务中,中国完成复杂的回样任务、将月球岩石带回了地球,顺利完成中国在 2000 年初构想的“绕、登、回”三步登月计划。一系列成功再加上国际社会对于月球重燃科学与商业兴趣,使得中国有意愿凭借嫦娥计划验证的新能力开展另一项前所未有的月球计划

国际月球研究站(ILRS)是一个复杂、分多个阶段的大型项目,中国国家航天局(CNSA)今年 6 月在圣彼得堡与俄罗斯联合为其揭幕。从 2020 年代的机器人着陆与轨道飞行任务开始,设计者设想到 2030 年代中期建立一处有人居住的月球永久基地,其目标涵盖科学、探索、技术验证、资源与商业开发、天文观测等等。 ILRS 将先开展一波持续至 2030 年的机器人侦察阶段,使用轨道与月表航天器调查潜在的着陆区域与资源分布、开展技术验证测试,并评估在月球上建立永久载人基地的前景。此阶段将包括嫦娥四号、嫦娥六号样本返回、更加雄心勃勃的嫦娥七号以及俄罗斯月球航天器发射计划等,同时欢迎各位有意加入这项努力的国际合作伙伴。嫦娥七号将以月球南极为登陆目标,由轨道器、中继卫星、着陆器及漫游车共同组成。嫦娥七号还将包含一台能够“跳跃”探索阴影陨石坑的小型航天器,负责寻找潜在的水冰证据。如果存在水冰资源,那么未来或可用于设备推进及宇航员补给。 中国国家航天局将在选定建站点后分两阶段推进建设,包括使用嫦娥八号的原地资源利用(ISRU)测试、大规模货物精确着陆交付以及合作伙伴之间的联合作业等。届时,原地资源利用测试将使用月球上的风化层(构成月球表面的大部分细尘、土壤与岩石)进行建造并从中提取氧气等资源。
生物技术
wanwan(42055)
发表于2021年09月23日 17时00分 星期四
来自牛津时间旅行:末日之书
从老鼠到猴子的哺乳动物都有尾巴,而人类及其近亲类人猿失去了尾巴。研究人员现在发现了一个简单的基因变化,可能是它导致我们的尾巴萎缩成小小的尾骨:这个流动的 DNA 片段跳入了染色体改变了类人猿制造关键发育蛋白的方式。这一发现还表明,这种基因转变会带来一个不明显、但却相当危险的影响:发育过程中脊髓的出生缺陷风险更高。哈佛大学进化生物学家 Hopi Hoekstra 表示,这项工作不仅回答了“人类为什么会变成如今这个样子”的有趣问题,同时也提供了关于这种演化方式发生机理的新见解。

纽约大学格罗斯曼医学院研究基因组进化的研究生 Bo Xia 表示,他从小就很好奇人为什么没有尾巴。几年前尾骨受伤的意外重新燃起了他的好奇心。近年来,人们已经对大量灵长类动物的基因组进行了测序,因此他开始在已知与尾巴发育有关的基因当中寻找各类猿特异性变化。在一个叫做 TBXT 的基因中,他发现了一位重大“嫌疑人”——其中插入了一条名为 Alu 元件的短 DNA,而且这种情况只出现在所有类人猿体内(在其他灵长类动物身上并不存在)。

Alu 序列能够在基因组当中移动,有时也被称为跳跃基因或者转座元件。它们可能是古代病毒的残余,在人类基因组中非常常见,约占人类总 DNA 量的 10%。有时候,Alu插入会中断基因并阻止蛋白质的生产;在其他情况下,这些元件还会引发更复杂的影响,包括改变蛋白质表达的位置或方式。加州大学圣迭戈分校的进化生物学家 Pascal Gagneux 表示,这使其成为推动演化变异的巨大驱力。他强调,这种插入“往往成本极高,但每隔一段时间就会发生”,而生物演化则会保留其中有益的变异。

TBXT 会编码一种名为 brachyury 的蛋白质——在希腊语中意为“短尾”,因为它的突变会导致小鼠尾巴变短。乍看之下,猿特异性 Alu 元件似乎并未对基因造成任何重大破坏,但在认真观察之后,Xia 注意到附近还潜伏着另一个 Alu 元件。这种元件存在于猴子和猿体内,但只有在猿身上两个 Al u才会粘接在一起形成一个环,由此改变 TBXT 的表达并令产生的蛋白质比原始蛋白稍短一些。Hoekstra 表示,这一结论“非常聪明,我就想不到对这样的突变进行测试。”

Xia 和他的同事还发现人类胚胎干细胞会产生两种形式的TBXT 信使RNA(mRNA),一种较长、一种较短。另一方面,小鼠细胞只会产生更长的转录本。研究人员使用基因组编辑技术 CRISPR 分别去除了人类胚胎干细胞中的两个 Alu 元件,可以发现任何一个Alu元件的缺失都会令 mRNA 的较短版本消失。在其他评估缩短的猿特异性蛋白质如何影响尾巴发育的实验中,Xia 和他的同事使用 CRISPR 制造出具有缩短版 TBXT 的小鼠。研究小组上周在 bioRxiv 发表的预印本论文中,他们提到携带两个缩短基因副本的小鼠未能存活下来,但带有一长一短版本的小鼠出生时尾巴长度各不相同——从完全无尾到几乎正常。